sexta-feira, 3 de julho de 2009

Geometria Analitíca

1 - Introdução

A Geometria Analítica é uma parte da Matemática , que através de processos particulares , estabelece as relações existentes entre a Álgebra e a Geometria. Desse modo , uma reta , uma circunferência ou uma figura podem ter suas propriedades estudadas através de métodos algébricos .
Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês René Descartes (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas. No seu livro Discurso sobre o Método, escrito em 1637, aparece a célebre frase em latim "Cogito ergo sum" , ou seja: "Penso, logo existo".

1.1 - Coordenadas cartesianas na reta

Seja a reta r na Fig. abaixo e sobre ela tomemos um ponto O chamado origem.
Adotemos uma unidade de medida e suponhamos que os comprimentos medidos a partir de O, sejam positivos à direita e negativos à esquerda.

O comprimento do segmento OA é igual a 1 u.c (u.c = unidade de comprimento). É fácil concluir que existe uma correspondência um a um (correspondência biunívoca) entre o conjunto dos pontos da reta e o conjunto R dos números reais. Os números são chamados abscissas dos pontos. Assim, a abscissa do ponto A’ é -1, a abscissa da origem O é 0, a abscissa do ponto A
é 1, etc.
A reta r é chamada eixo das abscissas.

1.2 - Coordenadas cartesianas no plano

Com o modo simples de se representar números numa reta, visto acima, podemos estender a idéia para o plano, basta que para isto consideremos duas retas perpendiculares que se interceptem num ponto O, que será a origem do sistema. Veja a Fig. a seguir:

Dizemos que a é a abscissa do ponto P e b é a ordenada do ponto P.
O eixo OX é denominado eixo das abscissas e o eixo OY é denominado eixo das ordenadas.
O ponto O(0,0) é a origem do sistema de coordenadas cartesianas.
Os sinais algébricos de a e b definem regiões do plano denominadas QUADRANTES.
No 1º quadrante, a e b são positivos, no 2º quadrante, a é negativo e b positivo, no 3º quadrante, ambos são negativos e finalmente no 4º quadrante a é positivo e b negativo.

Observe que todos os pontos do eixo OX tem ordenada nula e todos os pontos do eixo OY tem abscissa nula. Assim, dizemos que a equação do eixo OX é y = 0 e a equação do eixo OY é
x = 0.
Os pontos do plano onde a = b, definem uma reta denominada bissetriz do 1º quadrante, cuja equação evidentemente é y = x.
Já os pontos do plano onde a = -b (ou b = - a), ou seja, de coordenadas simétricas, definem uma reta denominada bissetriz do 2º quadrante, cuja equação evidentemente é y = - x.
Os eixos OX e OY são denominados eixos coordenados.

Exercícios Resolvidos

1) Se o ponto P(2m-8 , m) pertence ao eixo dos y , então :

a) m é um número primo
b) m é primo e par
c) m é um quadrado perfeito
d) m = 0
e) m <>

Solução:
Se um ponto pertence ao eixo vertical (eixo y) , então a sua abscissa é nula.
Logo, no caso teremos 2m - 8 = 0, de onde tiramos m = 4 e portanto a alternativa correta é a letra C, pois 4 é um quadrado perfeito (4 = 22).

2) Se o ponto P(r - 12 , 4r - 6) pertença à primeira bissetriz , então podemos afirmar que :

a) r é um número natural
b) r = - 3
c) r é raiz da equação x3 - x2 + x + 14 = 0
d) r é um número inteiro menor do que - 3 .
e) não existe r nestas condições .

Solução:
Os pontos da primeira bissetriz (reta y = x), possuem abscissa e ordenada iguais entre si. Logo, deveremos ter: r - 12 = 4r - 6 de onde conclui-se r = - 2.
Das alternativas apresentadas, concluímos que a correta é a letra C, uma vez que -2 é raiz da equação dada. Basta substituir x por -2 ou seja:
(-2)3 - (-2)2 + (-2) + 14 = 0 o que confirma que -2 é raiz da equação.

3) Se o ponto P(k , -2) satisfaz à relação x + 2y - 10 = 0 , então o valor de k 2 é :

a) 200
b) 196
c) 144
d) 36
e) 0

Solução:
Fazendo x = k e y = -2 na relação dada, vem: k + 2(-2) - 10 = 0.
Logo, k = 14 e portanto k2 = 142 = 196.
Logo, a alternativa correta é a letra B.

2 - Fórmula da distância entre dois pontos do plano cartesiano

Dados dois pontos do plano A(Xa,Ya) e B(Xb,Yb) , deduz-se facilmente usando o teorema de Pitágoras a seguinte fórmula da distancia entre os pontos A e B:

Esta fórmula também pode ser escrita como: d2AB = (Xb - Xa)2 + (Yb - Ya)2 , obtida da anterior, elevando-se ao quadrado (quadrando-se) ambos os membros.

Exercício Resolvido

O ponto A pertence ao semi-eixo positivo das ordenadas ; dados os pontos B(2 , 3) e C(-4 ,1) , sabe-se que do ponto A se vê o segmento BC sob um ângulo reto . Nestas condições podemos afirmar que o ponto A é :

a) (3,0)
b) (0, -1)
c) (0,4)
d) (0,5)
e) (0, 3)

Solução:
Como do ponto A se vê BC sob um ângulo reto, podemos concluir que o triângulo ABC é retângulo em A. Logo, vale o teorema de Pitágoras: o quadrado da hipotenusa é igual à soma dos quadrados dos catetos. Portanto, podemos escrever: AB2 + AC2 = BC2 (BC é a hipotenusa porque é o lado que se opõe ao ângulo reto A). Da fórmula de distância, podemos então escrever, considerando que as coordenadas do ponto A são (0,y) , já que é dado no problema que o ponto A está no eixo dos y e portanto sua abscissa é nula:

AB2 = ( 0 - 2 )2 + ( y - 3 )2 = 4 + ( y - 3 )2
AC2 = ( 0 - (-4))2 + ( y - 1)2 = 16 + ( y - 1 )2
BC2 = ( 2 - (-4))2 + ( 3 - 1 )2 = 40
Substituindo, vem: 4 + ( y - 3 )2 + 16 + ( y - 1 )2 = 40 \ ( y - 3 )2 + ( y - 1)2 = 40 - 4 - 16 = 20

Desenvolvendo, fica: y2 - 6y + 9 + y2 - 2y + 1 = 20 \ 2y2 - 8y - 10 = 0 \ y2 - 4y - 5 = 0 , que resolvida, encontramos y = 5 ou y = -1. A raiz y = -1 não serve, pois foi dito no problema que o ponto A está no semi-eixo positivo . Portanto, o ponto procurado é A(0,5), o que nos leva a concluir que a alternativa correta é a letra D.

3 - Ponto médio de um segmento

Dado o segmento de reta AB , o ponto médio de AB é o ponto M Î AB tal que AM = BM .
Nestas condições, dados os pontos A(x1 , y1) e B(x2 , y2) , as coordenadas do ponto médio
M(xm , ym) serão dadas por:

Exercício Resolvido

Sendo W o comprimento da mediana relativa ao lado BC do triângulo ABC onde A(0,0), B(4,6) e C(2,4) , então W2 é igual a:

a) 25
b) 32
c) 34
d) 44
e) 16

Solução:
Chama-se mediana de um triângulo relativa a um lado, ao segmento de reta que une um vértice ao ponto médio do lado oposto. Assim, a mediana relativa ao lado BC será o segmento que une o ponto A ao ponto médio de BC. Das fórmulas de ponto médio anteriores, concluímos que o ponto médio de BC será o ponto M( 3, 5). Portanto, o comprimento da mediana procurado será a distância entre os pontos A e M. Usando a fórmula de distância encontramos AM = Ö 34 ou seja raiz quadrada de 34. Logo, W = Ö 34 e portanto W2 = 34, o que nos leva a concluir que a resposta correta está na alternativa C.

4 - Baricentro de um triângulo

Sabemos da Geometria plana , que o baricentro de um triângulo ABC é o ponto de encontro das 3 medianas . Sendo G o baricentro , temos que AG = 2 . GM onde M é o ponto médio do lado oposto ao vértice A (AM é uma das 3 medianas do triângulo).
Nestas condições , as coordenadas do baricentro G(xg , yg) do triângulo ABC onde A(xa , ya) , B(xb , yb) e C(xc , yc) é dado por :

Conclui-se pois que as coordenadas do baricentro do triângulo ABC, são iguais às médias aritméticas das coordenadas dos pontos A , B e C.

Assim, por exemplo, o baricentro (também conhecido como centro de gravidade) do triângulo ABC onde A(3,5) , B(4, -1) e C(11, 8) será o ponto G(6, 4). Verifique com o uso direto das fórmulas.

Exercício resolvido

Conhecendo-se o baricentro B(3,5), do triângulo XYZ onde X(2,5) , Y(-4,6) , qual o comprimento do segmento BZ?

Solução:
Seja o ponto Z(a,b). Temos, pela fórmula do baricentro:
3 = (2 - 4 + a) / 3 e 5 = (5 + 6 + b) / 3
Daí, vem que a = 11 e b = 4. O ponto Z será portanto Z(11, 4).
Usando a fórmula da distância entre dois pontos, lembrando que B(3,5) e Z(11,4),
encontraremos BZ = 651/2 u.c. (u.c. = unidades de comprimento).


1 - O uso do Determinante de terceira ordem na Geometria Analítica

1.1 - Área de um triângulo

Seja o triângulo ABC de vértices A(xa , ya) , B(xb , xc) e C(xc , yc) . A área S desse triângulo é dada por
S = 1/2 . | D | onde ½ D½ é o módulo do determinante formado pelas coordenadas dos vértices A , B e C .

Temos portanto:

A área S é normalmente expressa em u.a. (unidades de área)
Para o cálculo do determinante de terceira ordem, utilizamos a conhecida e prática regra de Sarrus.

1.2 - Condição de alinhamento de três pontos

Três pontos estão alinhados se são colineares , isto é , se pertencem a uma mesma reta .
É óbvio que se os pontos A , B e C estão alinhados , então o triângulo ABC não existe , e podemos pois considerar que sua área é nula ( S = 0 ) .
Fazendo S = 0 na fórmula de área do item 1.1 , concluímos que a condição de alinhamento dos 3 pontos é que o determinante D seja nulo , ou seja : D = 0 .

Exercício resolvido:

Se os pontos P(3 , 5) , Q(-3 , 8) e C(4 , y) são colineares , então o valor de y é :

a) 4
b) 3
c) 3,5
d) 4,5
e) 2

Solução:

Para que estes pontos estejam alinhados (pontos colineares), deveremos ter:

Desenvolvendo o determinante pela Regra de Sarrus, obtemos:
- 32 - 3y + 15 + 24 - 3y + 20 = 0 \ y = 9/2 = 4,5.
Portanto a alternativa correta é a letra D.

2 - Equação geral da reta.

Seja r a reta que passa pelos pontos A(xa , ya) e B(xb , yb).
Seja P(x , y) um ponto qualquer desta reta . Pela condição de alinhamento de 3 pontos , podemos escrever:

Desenvolvendo o determinante acima obtemos:
(Ya - Yb) . x + (Xa - Xb) . y + (XaYb - XbYa) = 0 .

Fazendo Ya - Yb = a , Xa - Xb = b e XaYb - XbYa = c , decorre que todo ponto P(x,y) pertencente à reta , deve verificar a equação :
ax + by + c = 0
que é chamada equação geral da reta r .

Exemplos:
2x + 5y - 4 = 0 (a = 2 , b = 5 , c = -4)
3x - 4y = 10 (a = 3 , b = -4 , c = -10); observe que podemos escrever 3x - 4y - 10 = 0.
3y + 12 = 0 (a = 0 , b = 3 , c = 12)
7x + 14 = 0 (a = 7 , b = 0 , c = 14)
x = 0 (a = 1 , b = 0 , c = 0) ordenadas .® equação do eixo Oy - eixo das
y = 0 (a = 0 , b = 1 , c = 0) ® equação do eixo Ox - eixo das abscissas .

Observações:
a) a = 0 ® y = - c/b (reta paralela ao eixo dos x )
b) b = 0 ® x = - c/a (reta paralela ao eixo dos y)

3 - Posição relativa de duas retas

Sabemos da Geometria que duas retas r e s no plano podem ser :

Paralelas : r Ç s = Æ
Concorrentes : r Ç s = { P } , onde P é o ponto de interseção .
Coincidentes : r = s.

Dadas as retas r : ax + by + c = 0 e s : a’x + b’y + c’ = 0 , temos os seguintes casos :

® as retas são coincidentes .

® as retas são paralelas .

as retas são concorrentes .

Exercícios resolvidos

1 - OSEC-SP - Qual a posição relativa das retas r : x + 2y + 3 = 0 e s: 4x + 8y + 10 = 0 ?

Solução:

Temos que: 1 / 4 = 2 / 8 ¹ 3 / 10 (segundo caso acima) e, portanto as retas são paralelas.

2 - Dadas as retas r : 3x + 2y - 15 = 0 ; s : 9x + 6y - 45 = 0 e t : 12x + 8y - 60 = 0 , podemos afirmar:
a) elas são paralelas
b) elas são concorrentes
c) r Ç t Ç s = R
d) r Ç s Ç t = R2
e) as três equações representam uma mesma reta .

Solução:
Primeiro vamos verificar as retas r e s: 3 / 9 = 2 / 6 = -15 / -45 (primeiro caso acima) e portanto as
retas r e s são coincidentes.
Comparando agora, por exemplo a reta r com a reta t , teremos:
3 / 12 = 2 / 8 = -15 / -60 (primeiro caso acima);
Portanto as retas r, s e t são coincidentes, ou seja, representam a mesma reta.
Logo a alternativa correta é a letra E.

3) Para se determinar o ponto de interseção de duas retas , basta resolver o sistema de equações formado pelas equações das retas. Nestas condições , pede-se calcular as coordenadas do ponto de interseção das retas r : 2x + 5y - 18 = 0 e s : 6x - 7y - 10 = 0.

Solução:
Da equação da reta r tiramos: x = (18 - 5y) / 2 (eq. 1);
substituindo na equação da reta s vem:
6[(18-5y) / 2] - 7y -10 = 0 \ 54 - 15y - 7y - 10 = 0 \ 44 - 22y = 0 \ 44 = 22y \ y = 2;
substituindo o valor de y na eq. 1 fica: .x = (18 - 5.2) / 2 = 4.
Portanto o ponto de interseção é o ponto P(4,2).


Elipse de centro na origem (0,0) do plano cartesiano

1 – Definição:

Dados dois pontos fixos F1 e F2 de um plano, tais que a distancia entre estes pontos seja igual a 2c
> 0, denomina-se elipse, à curva plana cuja soma das distancias de cada um de seus pontos P à estes pontos fixos F1 e F2 é igual a um valor constante 2a , onde a > c.
Assim é que temos por definição:
PF1 + PF2 = 2 a
Os pontos F1 e F2 são denominados focos e a distancia F1F2 é conhecida com distancia focal da elipse.
O quociente c/a é conhecido como excentricidade da elipse.
Como, por definição, a
> c, podemos afirmar que a excentricidade de uma elipse é um número positivo menor que a unidade.

2 – Equação reduzida da elipse de eixo maior horizontal e centro na origem (0,0).

Seja P(x, y) um ponto qualquer de uma elipse e sejam F1(c,0) e F2(-c,0) os seus focos. Sendo 2a o valor constante com c
< a, como vimos acima, podemos escrever:
PF1 + PF2 = 2.a



onde o eixo A1A2 de medida 2a, é denominado eixo maior da elipse e o eixo B1B2 de medida 2b, é denominado eixo menor da elipse.

Usando a fórmula da distancia entre dois pontos, poderemos escrever:


Observe que x – (-c) = x + c.

Quadrando a expressão acima, vem:

Com bastante paciência , desenvolvendo a expressão acima e fazendo
a2 – c2 = b2 , a expressão acima depois de desenvolvida e simplificada, chegará a:
b2.x2 + a2.y2 = a2.b2
Dividindo agora, ambos os membros por a2b2 vem finalmente:



que é a equação da elipse de eixo maior horizontal e centro na origem (0,0).

Notas:
1) como a2 – c2 = b2 , é válido que: a2 - b2 = c2, onde c é a abcissa de um dos focos da elipse.
2) como a excentricidade e da elipse é dada por e = c/a , no caso extremo de termos
b = a, a curva não será uma elipse e sim, uma circunferência, de excentricidade nula, uma vez que sendo b = a resulta c = 0 e, portanto e = c/a = 0/a = 0.
3) o ponto (0,0) é o centro da elipse.
4) se o eixo maior da elipse estiver no eixo dos y e o eixo menor estiver no eixo dos x, a equação da elipse de centro na origem (0,0) passa a ser:

EXERCÍCIOS RESOLVIDOS E PROPOSTOS

1 – Determine a excentricidade da elipse de equação 16x2 + 25y2 – 400 = 0.

SOLUÇÃO: Temos: 16x2 + 25y2 = 400. Observe que a equação da elipse não está na forma reduzida. Vamos dividir ambos os membro por 400. Fica então:

Portanto, a2 = 25 e b2 = 16. Daí, vem: a = 5 e b = 4.
Como a2 = b2 + c2 , vem substituindo e efetuando, que c = 3
Portanto a excentricidade e será igual a : e = c/a = 3/5 = 0,60
Resposta: 3/5 ou 0,60.

2 – CESCEA 1969 – Determine as coordenadas dos focos da elipse de equação
9x2 + 25y2 = 225.

SOLUÇÃO: dividindo ambos os membros por 225, vem:

Daí, vem que: a2=25 e b2=9, de onde deduzimos: a = 5 e b = 3.
Portanto, como a2 = b2 + c2, vem que c = 4.
Portanto, as coordenadas dos focos são: F1(4,0) e F2(-4,0).

3 – Determine a distancia focal da elipse 9x2 +25y2 – 225 =0.

SOLUÇÃO: a elipse é a do problema anterior. Portanto a distancia focal ou seja, a distancia entre os focos da elipse será:
D = 4 – (- 4) = 8 u.c (u.c. = unidades de comprimento).

4 – Calcular a distancia focal e a excentricidade da elipse 25x2 + 169y2 = 4225.
Resposta: e = 12/13 e df = 2c = 24.

5 – Determinar a equação da elipse com centro na origem, que passa pelo ponto P(1,1) e tem um foco F(-Ö 6 /2, 0).
Resposta: x2 + 2y2 = 3.


Hipérbole de centro na origem (0,0)

1 – Definição:

Dados dois pontos fixos F1 e F2 de um plano, tais que a distancia entre estes pontos seja igual a 2c
> 0, denomina-se hipérbole, à curva plana cujo módulo da diferença das distancias de cada um de seus pontos P à estes pontos fixos F1 e F2 é igual a um valor constante 2a , onde a < c.
Assim é que temos por definição:
½ PF1 - PF2 ½ = 2 a

Os pontos F1 e F2 são denominados focos e a distancia F1F2 é conhecida com distancia focal da hipérbole.
O quociente c/a é conhecido como excentricidade da hipérbole.
Como, por definição, a
< c, concluímos que a excentricidade de uma hipérbole é um número positivo maior que a unidade.
A1A2 é denominado eixo real ou eixo transverso da hipérbole, enquanto que B1B2 é denominado eixo não transverso ou eixo conjugado da hipérbole. Observe na figura acima que é válida a relação:
c2 = a2 + b2
O ponto (0,0) é o centro da hipérbole.

2 – Equação reduzida da hipérbole de eixo transverso horizontal e centro na origem (0,0)

Seja P(x, y) um ponto qualquer de uma hipérbole e sejam F1(c,0) e F2(-c,0) os seus focos. Sendo 2.a o valor constante com c > a, como vimos acima, podemos escrever:
½ PF1 - PF2 ½ = 2 a
Usando a fórmula da distancia entre dois pontos, poderemos escrever:

Observe que x – (-c) = x + c.
Quadrando a expressão acima, vem:

Com bastante paciência e aplicando as propriedades corretas, a expressão acima depois de desenvolvida e simplificada, chegará a:
b2.x2 - a2.y2 = a2.b2, onde b2 = c2 – a2 , conforme pode ser verificado na figura acima.

Dividindo agora, ambos os membros por a2b2 vem finalmente:

Obs: se o eixo transverso ou eixo real (A1A2) da hipérbole estiver no eixo dos y e o eixo não transverso ou eixo conjugado (B1B2) estiver no eixo dos x, a equação da hipérbole de centro na origem (0,0) passa a ser:

EXERCÍCIOS RESOLVIDOS E PROPOSTOS

1 – Determine a excentricidade da hipérbole de equação 25x2 - 16y2 – 400 = 0.

SOLUÇÃO: Temos: 25x2 - 16y2 = 400. Observe que a equação da hipérbole não está na forma reduzida. Vamos dividir ambos os membro por 400. Fica então:

Portanto, a2 = 16 e b2 = 25. Daí, vem: a = 4 e b = 5.
Como c2 = a2 + b2 , vem substituindo e efetuando que c =
Ö 41
Portanto a excentricidade e será igual a : e = c/a =
Ö 41 /4 = 1,60
Resposta: 1,60.

2 – Determine a distancia focal da hipérbole de equação 25x2 – 9y2 = 225 .

SOLUÇÃO: Dividindo ambos os membros por 225, vem:

Daí, vem que: a2=9 e b2=25, de onde vem imediatamente: a=3 e b=5.
Portanto, c2 = a2 + b2 = 9 + 25 = 34 e então c =
Ö 34.
Logo, a distancia focal da hipérbole sendo igual a 2c , será igual a 2
Ö 34.

3 – Determine as equações das assíntotas da hipérbole do exercício 1.
Resposta: y = (5/4).x ou y = (-5/4).x
NOTA: entende-se por assíntotas de uma hipérbole de centro na origem, como as retas que passam na origem (0,0) e tangenciam os dois ramos da hipérbole num ponto impróprio situado no infinito.
Dada a hipérbole de equação:

Prova-se que as assíntotas, são as retas de equações:
R1: y = (b/a).x e R2: y = -(b/a).x
Veja a figura abaixo:


1 - Introdução

Se você consultar o Novo Dicionário Brasileiro Melhoramentos - 7ª edição, obterá a seguinte definição para a parábola:
"Curva plana, cujos pontos são eqüidistantes de um ponto fixo (foco) e de uma reta fixa (diretriz) ou curva resultante de uma secção feita num cone por um plano paralelo à geratriz. Curva que um projétil descreve."

Esta definição não está distante da realidade do rigor matemático. (Os dicionários, são, via de regra, uma boa fonte de consulta também para conceitos matemáticos, embora não se consiga neles - é claro - a perfeição absoluta, o que, de uma certa forma, é bastante compreensível, uma vez que a eles, não cabe a responsabilidade pela precisão dos conceitos e definições matemáticas).

2 - Definição

Considere no plano cartesiano xOy, uma reta d (diretriz) e um ponto fixo F (foco) pertencente ao eixo das abcissas (eixo dos x), conforme figura abaixo:
Denominaremos
PARÁBOLA, à curva plana formada pelos pontos P(x,y) do plano cartesiano, tais que
PF = Pd onde:
PF = distância entre os pontos P e F
PP' = distância entre o ponto P e a reta d (diretriz).


Importante:
Temos portanto, a seguinte relação notável: VF = p/2

3 - Equação reduzida da parábola de eixo horizontal e vértice na origem

Observando a figura acima, consideremos os pontos: F(p/2, 0) - foco da parábola, e P(x,y) - um ponto qualquer da parábola. Considerando-se a definição acima, deveremos ter: PF = PP'

Daí, vem, usando a fórmula da distancia entre pontos do plano cartesiano:

Desenvolvendo convenientemente e simplificando a expressão acima, chegaremos à equação reduzida da parábola de eixo horizontal e vértice na origem, a saber:
y2 = 2px onde p é a medida do parâmetro da parábola.

3.1 - Parábola de eixo horizontal e vértice no ponto (x0, y0)

Se o vértice da parábola não estiver na origem e, sim, num ponto (x0, y0), a equação acima fica:
(y - y0)2 = 2p(x-x0)

3.2 - Parábola de eixo vertical e vértice na origem

Não é difícil provar que, se a parábola tiver vértice na origem e eixo vertical, a sua equação reduzida será: x2 = 2py

3.3 - Parábola de eixo vertical e vértice no ponto (x0, y0)

Analogamente, se o vértice da parábola não estiver na origem, e, sim, num ponto (x0, y0), a equação acima fica: (x - x0)2 = 2p(y - y0)

Exercícios resolvidos

1 - Qual a equação da parábola de foco no ponto F(2,0) e vértice na origem?

Solução: Temos p/2 = 2 \ p = 4
Daí, por substituição direta, vem:
y2 = 2.4.x
\ y2 = 8x ou y2 - 8x = 0.

2 - Qual a equação da parábola de foco no ponto F(4,0) e vértice no ponto V(2,0)?

Solução: Como já sabemos que VF = p/2, vem, 2 = p/2 \ p = 4.
Logo, (y - 0)2 = 2.4(x - 2)2
\ y2 = 8(x-2) \ y2 - 8x + 16 = 0, que é a equação da parábola.

3 - Qual a equação da parábola de foco no ponto F(6,3) e vértice no ponto V(2,3)?

Solução: Como VF = p/2, vem: 4 = p/2 \ p = 8.
Daí, vem: (y - 3)2 = 2.8(x - 2)
\ y2 - 6y + 9 = 16x - 32 \ y2 - 6y - 16x + 41 = 0, que é a equação procurada.

4 - Qual a equação da parábola de foco no ponto F(0,4) e vértice no ponto V(0,1)?

Solução: Como VF = p/2, vem: 3 = p/2 \ p = 6. Logo,
(x - 0)2 = 2.6(y - 1)
\ x2 = 12y - 12 \ x2 - 12y + 12 = 0, que é a equação procurada.

Exercício proposto

Determine a equação da parábola cuja diretriz é a reta y = 0 e cujo foco é o ponto F(2,2).
Resposta: x2 - 4x - 4y + 8 = 0




Fonte: http://www.algosobre.com.br/matematica/geometria-analitica


Nenhum comentário:

Postar um comentário